THE MEASUREMENT OF SALES FORCE MOTIVATION REVISITED

Motivating salespersons is one of the most important aspects of sales force management. The prevalent sales force motivation research stream relies essentially on Vroom’s expectancy theory. In spite of its widespread use, this theory is shown to present a number of shortcomings when applied to many sales force situations. The purpose of this paper is to outline a mathematical formulation of a salesperson’s motivation to perform a certain type of activity, (1) that is in line with the compelling logic of Vroom’s motivation expectancy theory; (2) that includes relevant sales force concepts; and (3) that can potentially address typical sales force motivation situations.

Introduction

Motivation has long been a topic of considerable debate and research in the social sciences, as testified by the extremely large number of articles and books that has been devoted to the subject over the past few decades. It has led to the development of several theories, each one concentrating on one specific aspect of motivation, and each one yielding different and sometimes conflicting implications. Because salesperson motivation is one of the most important aspects of sales force management, it may not be surprising that researchers and sales force practitioners have attempted to apply these various motivation theories from the social sciences to sales force situations.

The sales management textbook literature frequently explains the basic rationale on which each theory relies and tries to draw some managerial implications. The sales force research literature typically draws from one theory at a time, and overlooks other plausible motivation theories. Thus, motivation theories have provided at least partial explanations of why people do what they do. See for instance, economic utility theory (Lancaster, 1969), Freud’s psychoanalytical theory, Maslow’s hierarchy of needs theory (1943), Alderfer’s theory (1969), means-end chain theory (Gutman, 1982), Lewin’s psychological theory (1938), Hull’s drive theory (1952), Adams’s equity theory (1963), Locke and Latham’s goal setting theory (1990), attribution theory (Heider, 1944; 1958), or Herzberg dual factor theory (1986). No motivation theory, however, has received more attention in sales management than Vroom’s expectancy theory (1964). It is one of the most complete motivation theories that captures many aspects of sales force situations. As a result, it is not surprising that the prevalent sales force motivation research stream that stems from the Walker et al. (1977) paradigm essentially relies on expectancy theory.

As discussed in the following section, in spite of its merits, expectancy theory, however, suffers from at least two major shortcomings when applied to sales force research. First, it does not fit well to a number of typical sales force motivation situations and, being developed in another discipline, it does not take into account some very relevant and well accepted sales force concepts. Second, for practical convenience, the operational measures of motivation in sales force research have frequently departed from Vroom’s conceptualization (1964).
The purpose of this paper is to outline a mathematical formulation of a salesperson’s motivation to perform a certain type of activity (1) that is in line with the compelling logic of Vroom’s motivation expectancy theory; (2) that includes relevant sales force concepts; and (3) that can provide more convenient operational procedures than the general Vroomian framework.

The following sections briefly discuss Vroom’s expectancy theory and its applications to sales force research; provide some criticisms of this theory applied to the sales force motivation problem; and outline a general model that alleviates some of these shortcomings.

Vroom's Expectancy Theory

The historical roots of expectancy theory (also called expectancy-value model) can be traced back to the work of Lewin (1938) and Tolman (1932), but the theory is most frequently attributed to Vroom (1964). The basic idea behind expectancy theory is that motivation depends on the outcomes that individuals expect from their actions. Sales force researchers and academics have used this theory extensively. It is part of the Walker et al.’s paradigm of salespeople’s performance (1977) which has served as the basis for sales force research over the last two and a half decades (see for instance DeCarlo et al., 1997; Dubinski et al., 1993; Evans et al., 1982; Johnston and Kim, 1994; Oliver, 1974; Teas, 1981; Teas and McElroy, 1986). According to expectancy theory, people are motivated to perform those work activities that they find attractive and that they feel they can accomplish. In addition, the attractiveness of various work activities depends on how well these activities can lead to favorable consequences for individuals (Johns, 1996, p.171). Formally, the theory posits that employee job performance (P) is a function of the product of motivation (M) and ability (A):

\[P = f(M \cdot A) \]

In addition, an employee's motivation (M) is assumed to be a function of the product of the valence of performance outcome or performance goal i (V_i) and the expectancy (E_i) (or subjective probability) that his/her efforts will result in the achievement of this goal:

\[M = F(V_i \cdot E_i) \]

Finally, a performance level is hypothesized to acquire positive or negative valence depending on whether an employee perceives it as leading to or hindering desired job-related outcomes (such as financial rewards). This perception of the degree to which performance goal i will lead to the attainment of job-related outcome j is called the instrumentality (I_ij) of performance level i for outcome j:

\[V_i = f'(\sum_{j=1}^{n} (v_j \cdot I_{ij})) \]

where n is the number of all relevant job outcomes. Note that valence v is positive if the outcome is desirable, negative is it is undesirable, and zero if the subject is indifferent. As a result, individuals are assumed to select among a set of possible actions the alternative that they expect to bring them the highest value or utility. An example of application of expectancy theory to a given salesperson is provided in Figure 1, and a simple numerical application for two hypothetical salespersons is shown in Table 1.

In this example, both salespersons are assumed to have the same instrumentalities, expectancies, and valences for positive job-related outcomes patterns. They differ only in terms
of their valences for the negative job-related outcomes of their activities (Salesperson 2 experiences

Figure 1

Example of Application of Vroom’s Expectancy Theory

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>POSITIVE PERFORMANCE OUTCOMES</th>
<th>POSITIVE JOB-RELATED OUTCOMES</th>
<th>VALENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>Immediate sales volume</td>
<td>Higher commissions</td>
<td>v₁</td>
</tr>
<tr>
<td>E2</td>
<td>Higher market penetration</td>
<td>Positive evaluation by</td>
<td>v₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td>supervisors (towards</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>promotion)</td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>More profits from territory</td>
<td>Self-fulfillment</td>
<td>v₃</td>
</tr>
<tr>
<td>E4</td>
<td>Sales objective met (or over-passed)</td>
<td>Social recognition</td>
<td>v₄</td>
</tr>
<tr>
<td>E5</td>
<td>Own visibility in the sales Force</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valence of positive outcomes: \(V_i = \sum_k (v_k \cdot I_{ik}) \)

<table>
<thead>
<tr>
<th>NEGATIVE PERFORMANCE OUTCOMES</th>
<th>NEGATIVE JOB-RELATED OUTCOMES</th>
<th>VALENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>E6 Not enough time to cultivate prospects (few new accounts)</td>
<td>Negative evaluation by supervisors (toward promotion)</td>
<td>- v₅</td>
</tr>
<tr>
<td>E7 Not enough time to service clients (dissatisfied clients)</td>
<td>Stress</td>
<td>- v₆</td>
</tr>
<tr>
<td>E8 Necessity to work harder</td>
<td>More tense family life</td>
<td>- v₇</td>
</tr>
<tr>
<td></td>
<td>Effort/fatigue</td>
<td>- v₈</td>
</tr>
</tbody>
</table>

Valence of negative outcomes: \(V_j = - \sum_l (v_l \cdot I_{jl}) \)

Salesperson’s motivation for selling:

\[
M = \sum_i E_i V_i - \sum_j E_j V_j = \sum_i E_i \left[\sum_k v_k I_{ik} \right] - \sum_j E_j \left[\sum_l v_l I_{lj} \right]
\]
Table 1

Numerical Example of Motivation Measurement According to Expectancy Theory

<table>
<thead>
<tr>
<th>Expectancies</th>
<th>Instrumentalities</th>
<th>Valences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Salespersons 1 and 2</td>
<td>Salesperson 1</td>
</tr>
<tr>
<td>E_1 = 0.8</td>
<td>I_{11} = 1.0</td>
<td>v_1 = 9</td>
</tr>
<tr>
<td>E_2 = 0.6</td>
<td>I_{12} = 0.5</td>
<td>v_2 = 8</td>
</tr>
<tr>
<td>E_3 = 0.7</td>
<td>I_{22} = 0.4</td>
<td>v_3 = 5</td>
</tr>
<tr>
<td>E_4 = 0.5</td>
<td>I_{32} = 0.6</td>
<td>v_4 = 4</td>
</tr>
<tr>
<td>E_5 = 0.2</td>
<td>I_{42} = 0.8</td>
<td>v_5 = -2</td>
</tr>
<tr>
<td>E_6 = 0.9</td>
<td>I_{43} = 1.0</td>
<td>v_6 = -3</td>
</tr>
<tr>
<td>E_7 = 0.8</td>
<td>I_{53} = 0.5</td>
<td>v_7 = -1</td>
</tr>
<tr>
<td>E_8 = 0.5</td>
<td>I_{54} = 0.4</td>
<td>v_8 = -4</td>
</tr>
<tr>
<td></td>
<td>I_{65} = 0.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_{75} = 0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_{76} = 0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_{86} = 0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_{87} = 0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_{88} = 1</td>
<td></td>
</tr>
</tbody>
</table>

\[\sum_i E_i \left[\sum_k v_k I_{ik} \right] = 22.20 \quad 22.20\]
\[\sum_j E_j \left[\sum_l v_l I_{jl} \right] = 7.55 \quad 16.65\]
\[M = 14.65 \quad 5.55\]

stronger discomfort than Salesperson 1). Assuming that the two salespersons are sufficiently alike to allow for interpersonal comparisons of their utilities, not surprisingly, according to expectancy theory, Salesperson 1 obtains a higher motivation score (14.65) than Salesperson 2 (5.55). No simple interpretation of those scores, however, can be provided.

Expectancy Theory Applied to Sales Force Motivation

Expectancy theory has received some support from empirical tests in business settings (Campbell et al., 1970; Kanfer, 1990; Lawler, 1968; Mitchell, 1974; Nebecker and Mitchell, 1974; Porter and Lawler, 1968; Schuster et al., 1971) and in sales force situations as well (Oliver, 1974; Tyagi, 1985). In most of these studies, however, expectancy theory has shown its limits. Two types of issues seem not to have been properly addressed in the past. They relate to the imperfect fit of expectancy theory to many sales force situations and to debatable operational procedure issues.

Imperfect Fit Issues

Few studies have recognized that sales force motivation situations fall into one of two types of somewhat different categories, namely specific objective or directional objective situations.

1. The specific objective situation. This is the case in which a specific objective has been assigned to an individual, and some of the attached job-related outcomes depend on whether
this objective is met or not. Consequently, the activity level decision that underlies this motivation problem involves dichotomous alternatives for an individual. In a sales force context, this is the case, for instance, of salespeople’s motivation through sales quotas, in which a salesperson must decide whether to strive to meet the sales quota, or not (Darmon, 1997). The salesperson should compare the expected values of the two alternatives (i.e., to put enough effort and time for achieving the quota, or not bother trying to meet it), and select the course of action that brings him/her the highest expected value.

Note that this case is better treated by Locke and Latham’s (1990) goal setting theory which specifies that not only are individuals motivated to satisfy their needs, but they are also motivated to strive for and reach goals. Goal setting theorists assert that assigned goals affect salespersons’ beliefs about their ability to perform the task (or self-efficacy) and their personal goals. These two factors, in turn, influence job performance. The underlying rationale is that goals can be motivators. Salespersons will compare their current ability to perform with that required for meeting the goal. If they fall short of the goal (by a reasonable margin), people will be dissatisfied and will work harder for meeting the objective. In other words, salespersons will make the objective their own personal goal and will be committed to it. In this case, they will feel successful and competent (Wright et al, 1994).

In a sales force context, many motivation devices fall into the specific objective category: Bonuses and commissions pending on some minimum sales performance, club membership, incentive travels, and sometimes, sales contests are typical examples.

2. The directional objective situation. Alternatively, management may not specify a goal to be attained, but may provide individuals with only a desirable direction to follow. In this case, the motivation problem implies that this individual should select his own activity level along a whole continuum of possible activity levels. For instance, let us consider the case in which salespersons are compensated with straight commissions on sales. Here, a commission plan is only directional in the sense that it does not specify which sales level should be attained: The higher the sales volume, the better for the firm—and for the salesperson. In such a case, it is up to the concerned salespersons to decide which sales level they want to strive for (within limits).

Note that the former case may be considered as a special (and simplified) instance of the latter case, because comparing two alternatives is a simplified form of evaluating a large number (or an infinity) of alternatives. In addition, in most selling situations, some achievement in one area may lead to different types of job-related outcomes, some intrinsic and others extrinsic. As a result, both specific and directional objective situations are likely to be experienced simultaneously. For instance, a certain sales volume performance may be necessary to meet a quota and earn a bonus (a specific objective), and a salesperson to experience a feeling of achievement commensurate with the volume sold (a directional objective).

To conclude, an improved conceptual framework should address the specific as well as the directional objective situations. This is one of the objectives of the approach proposed in the next section.

Imperfect Operational Procedure Issues

Operational consequences of the specific and directional objective issue. A first operational issue is a direct consequence of the problem that has just been discussed. Specific and directional objective cases both involve quite different data requirements. In the former case, the status quo situation is well known to a salesperson, and typically, only the second alternative needs to be estimated. From an expectancy theory perspective, this requires one set of instrumentality, expectancy, and valence for job-related outcome estimates. In contrast, in the
directional objective case, a salesperson needs to compare an infinite number of alternatives, each one requiring its own set of parameter estimates! Needless to say that, in practice, this approach is very difficult (if not impossible) to implement.

Because many selling situations are of the directional objective type, sales force researchers who have applied expectancy theory have tended to oversimplify the problem. They have implicitly reduced the set of infinite number of alternatives to single or dichotomous alternatives. In other words, they have tended to treat directional-objective as if they were specific-objective situations. For instance, expectancy has been measured as “the chances in ten that his [the salesperson’s] efforts would lead to the attainment of his production goal” (Oliver, 1974, p.247). The questions are: “Which effort level?” and “Which goal level?” Some salespersons will set low goal levels, others high goals, depending on their motivation. In addition, chances are high that substantial efforts lead to at least a low performance level, and that low effort cannot achieve a high performance level.

In the same way, other operational measures of expectancies are based on a series of items of the type “Putting forth as much energy as possible would result in high sales volume” (Teas 1981, p. 221). Here again the questions are: “How much is as much energy as possible?” (Should a salesperson understand that he/she cannot spend time on any other selling task?), and “How high is a high sales volume?” Because the questions are not explicit enough, respondents must make their own assumptions before answering such questions. Consequently, it seems inappropriate to measure motivation without taking into account which goal levels salespeople strive for. This might be a gross over-simplification, because treating a general case as a special case requires (often implicit) assumptions that may be more or less warranted. In a Vroomian perspective, because a salesperson is supposed to provide point estimates for every considered alternative, no functional form of the various instrumentality and expectancy relationships involved need to be specified. As discussed above, the general case, however, requires a large number of function point estimates if expectancy theory is applied according to Vroom’s specification.

One way around this large database requirement problem could be to specify functional forms for instrumentalties and expectancies. Obviously, being developed in social psychology, expectancy theory could not explicitly take into account concepts that have been specifically developed in sales force management. In fact, the concept of instrumentality is very close to the concept of a remuneration (or reward) function in the sales force literature. In sales force situations, some of these instrumentality functions are quite explicit. This is the frequent case when a salesperson’s remuneration is an explicit function of performance.

In the same way, the sales management concept of a response function is very close (if not equivalent) to the concept of expectancy. Response functions link a salesperson’s inputs (e.g., time, effort) to performance. As a result, response functions take (implicitly or explicitly) such factors as environmental variables and uncertainties, market/territory variables (such as market potential and/or market penetration), and a salesperson’s aptitudes. It may be worthwhile to note that using the concept of a response function instead of the concept of expectancy highlights the fact that a salesperson’s perceived efficiency (or self-efficacy) is part of the motivation construct: Common sense suggests that a salesperson cannot be motivated to perform an activity when he/she knows that s/he is not competent enough to obtain the desired results. This departs from Vroom’s formulation, which specifies that performance is a function of motivation and aptitude, while it may be more appropriate to conceptualize perceived own abilities as a determinant of motivation itself.

As a result, it may be relevant to capitalize on concepts developed in sales management to adapt Vroom’s expectancy theory to the general sales force motivation problem. This is the second objective of the general model proposed in this paper.
Positive versus negative valences for job-outcomes. A second operational issue stemming from past applications of expectancy theory to sales force motivation is that, although expectancy theory accounts for the positive and negative job-related outcomes of a salesperson’s actions, it seems that frequently, in order to facilitate the data collection process, researchers have exclusively considered positive outcomes in their operational procedures (see for instance Oliver, 1974; Teas, 1981; Churchill et al., 1979; Tyagi, 1982; 1985). Of course, this view can be challenged on the grounds that in any case, at least the selling effort, hard work, and fatigue associated with work activities typically imply some disutility for a salesperson. Other negative consequences such as taking time away from family life or leisure time are always associated with allocating more time to work activities. In addition, the valences for negative outcomes are likely to be heterogeneous across salespersons. As a result, an operational measure of a salesperson’s motivation to engage in a certain activity should systematically account for the positive as well as negative expected consequences of this activity from the salesperson’s viewpoint. This will be the third objective of the model proposed in the following section.

Outline of a General Motivation Model

In this model, a salesperson’s motivation to engage in a certain activity is defined as this salesperson’s willingness (or decision, or anticipation) to deploy a given level of this type of activity. Unlike most expectancy theory applications to sales force situations, this model conceptualizes motivation as the level of activity that a salesperson expects to display.

This analysis is carried at the individual salesperson level. As specified by Vroom, a salesperson that contemplates performing some activity evaluates this course of action in terms of its expected positive and negative consequences, which are more or less valued. When considering engaging in a given activity (e.g., selling), a salesperson considers the positive and negative expected consequences of this activity, and will select the level of activity that maximizes value.

As postulated by Vroom, three types of relationships are involved. First, for any given perceived positive i ($i = 1,...I$), as well as for any negative j ($j = 1,...J$) performance outcomes, response functions specify relationships between all the possible levels of activity (A) and the perceived expected impact on some positive aspect i (P_i) and/or on some negative aspect j of performance outcomes (N_j). Let:

$$P_i = F_i (A), \forall i \ (i = 1,...I), \quad \text{and} \quad (1)$$

$$N_j = G_j (A), \forall j \ (j = 1,...J), \quad (2)$$

where F_i and G_j are specific functional forms, with $dP_i / dA > 0$, $d^2P_i / dA^2 < 0$, $dN_j / dA > 0$, and $d^2N_j / dA^2 < 0$. In expectancy theory terminology, these relationships are called expectancies.

The positive (P_i) and negative (N_j) performance outcome levels are expected to bring respectively certain levels (R_{ik}) of a set of k job-related outcomes in various goal areas ($k = 1,...K$), as well as negative job-related outcome levels (S_{jl}) of a set of l negative job-related outcomes ($l = 1,...L$) to this salesperson.

$$R_{ik} = f_{ik} (P_i), \forall i,k \ (i = 1,...I, \ k = 1,...K), \quad \text{and} \quad (3)$$

$$S_{jl} = g_{jl} (N_j), \forall j,l \ (j = 1,...J, \ l = 1,...L), \quad (4)$$
where \(f_i\) and \(g_j\) are specific functional forms, with \(dR_{ik}/dP_i > 0,\) \(d^2R_{ik}/dP_i^2 > 0,\) \(dS_{jl}/dN_j > 0,\) and \(d^2S_{jl}/dN_j^2 > 0.\) This assumption results from the application of agency theory to sales force compensation, which specifies that the remuneration should be a concave function of performance (see Basu et al., 1985). This specific functional form is characteristic of a firm’s compensation plan, promotion policies or the salesperson’s intrinsic value system. These functions may be explicit relationships such as the compensation function explicitly linking remuneration to performance (for instance, sales). They can be relationships linking a given level of performance to the probability of obtaining a certain reward (for instance a promotion or a salary increase). In expectancy theory terminology, these relationships are called instrumentalities.

As a result, the total set of expected positive job-related outcomes \((R_{ik})\) and the total set of expected negative job-related outcomes \((S_{jl})\) that result from activity \(A\) are given by:

\[
R_k = \sum_i R_{ik} \quad \forall k (k = 1, \ldots K), \quad \text{and} \quad (5)
\]

\[
S_l = \sum_j S_{jl} \quad \forall l (l = 1, \ldots L). \quad (6)
\]

Finally, a third type of relationship links valence for positive \((U_{Rk})\) and negative \((U_{Sl})\) job-related outcomes to the amounts of expected positive \((R_k)\) and negative \((S_l)\) job-related outcomes:

\[
U_{Rk} = f'_{ik} (R_k), \quad \forall k (k = 1, \ldots K), \quad \text{and} \quad (7)
\]

\[
U_{Sl} = g'_{jl} (S_l), \quad \forall l (l = 1, \ldots L), \quad (8)
\]

where \(f'_{ik}\) and \(g'_{jl}\) are specific functional forms, with \(dU_{Rk}/dR_k > 0,\) \(d^2U_{Rk}/dR_k^2 < 0,\) \(dU_{Sl}/dS_l < 0,\) and \(d^2U_{Sl}/dS_l^2 < 0.\) As a result,

\[
U_{Rk} = F'_{ik} (A), \quad \forall k (k = 1, \ldots K), \quad \text{and} \quad (9)
\]

\[
U_{Sl} = G'_{jl} (A), \quad \forall l (l = 1, \ldots L), \quad (10)
\]

where \(F'_{ik}\) and \(G'_{jl}\) are the resulting functional forms, with \(dU_{Rk}/dA > 0,\) \(d^2U_{Rk}/dA^2 < 0,\) \(dU_{Sl}/dA < 0,\) and \(d^2U_{Sl}/dA^2 < 0.\)

Let us assume that expected valences (or utilities) are additive. The total expected utility function of a given salesperson performing Activity \(A\) is:

\[
U_T = \sum_k U_{Rk} + \sum_l U_{Sl} = \sum_k F'_{ik} (A) + \sum_l G'_{jl} (A). \quad (11)
\]

This salesperson should select the activity level \(A^*\) that maximizes utilities, subject to \(A^*\) satisfying the salesperson’s resource and management’s constraints. In other words, \(A^*\) should satisfy:

\[
\sum_k (dU_{Rk}/dA^*) = - \sum_l (U_{Sl}/dA^*) \quad \text{s.t.} \quad A_{min} < A^* < A_{max} \quad (12)
\]

This formulation sets the problem in its most general form. By using specific functional forms, it is shown in an extended version of this paper that this framework leads to operational models of sales force motivation that can easily handle both specific and directional objective situations. Because in the directional objective case, a salesperson’s total utility function is continuous, it is differentiable and there is always a solution to problem (12).
In the case of a specific objective, a discontinuity is introduced in the remuneration functions and in the salesperson’s total utility function. It is straightforward to predict that the salesperson should select the optimal point without a specific objective (solution to (12)) or the specific objective, depending on which solution will provide the highest expected utility value. As predicted by goal theory (Locke and Latham, 1990), the salesperson will select the specific objective as long as it is judged reachable and worthwhile.

Implications and Conclusions

This proposed model of salesperson motivation provides useful implications for researchers and sales managers alike. In comparison with the typical expectancy theory operational measures (Oliver, 1974; Teas, 1981), this procedure has the advantage to propose a direct measure of motivation. In contrast with the traditional procedure in which the motivation and performance valence constructs are typically inferred by regressing performance measures against the valences and instrumentalities of a priori determined outcomes, expectancies, and ability (Oliver, 1974), in the present case, motivation can yield specific, meaningful, readily interpretable, and comparable sets of scores. A second implication of the procedure is to force researchers to include in their measurement process the actual features of the reward-sanction plans (and especially objective specific features of these plans) that salespersons actually experience in their jobs, rather than measuring motivation as if it were unrelated to the specific firm’s practices and policies.

From a managerial point of view, management can use the proposed procedure for assessing individual salesperson motivation levels as well as the overall sales force motivation. Because the operational measure is in terms of expected level of activity deployed by each salesperson, it allows for inter-comparison of individuals’ motivation levels. This can provide managers with clear indications on how to adjust incentive programs and sales force personnel policies for increasing motivation. In addition, the procedure has an immediate application. Sales managers can use it for estimating the motivation effect of any specific objective program (such as quota-bonus plans) even before the plan is actually implemented. As a result, it can be used for adjusting the objective-reward combinations that not only are motivating for salespersons, but also can increase a firm’s profits.

Obviously, at this stage, more work, especially empirical research, is needed in order to establish the convergent, discriminant, and, if possible, nomological validity of the proposed measurement process. This shows the most logical next step to be taken for further research.

References

Tyagi, Pradeep K., "Relative Importance of Key Job Dimensions and Leadership Behaviors in Motivating Salesperson Work Performance," *Journal of Marketing*, 49 (Summer 1985), 76-86.

